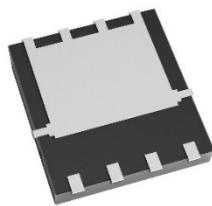

PDFN5X6 Package Type

1. 封装尺寸:

封装尺寸为 5mm×6mm, 厚度约 0.95mm, 属于紧凑型封装, 适合对空间要求较高的应用场景, 如汽车电子、消费电子等。

1. Package Dimensions

The package measures 5mm×6mm with a thickness of approximately 0.95mm. Classified as a compact package, it is well-suited for space-constrained applications such as automotive electronics and consumer electronics.

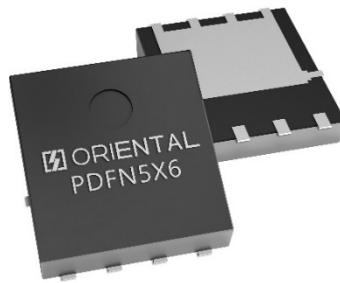


2. 散热性能:

部分 PDFN5X6 封装采用双面散热设计, 通过顶部和底部的散热金属层将芯片热量直接传导至外部, 有效降低热阻, 提升散热效率, 尤其适用于高功率密度场景。

2. Heat Dissipation Performance

Some PDFN5×6 packages adopt a double-sided cooling design. They conduct heat from the chip directly to the outside via the top and bottom heat-dissipating metal layers, effectively reducing thermal resistance and improving heat dissipation efficiency. This design is particularly suitable for high-power-density scenarios.



3、电气性能：

通常用于中低压功率 MOSFET 或 IGBT 等器件，具有低导通电阻 ($R_{ds(on)}$)、低栅极电荷 (Q_g)，支持高频开关，可降低导通损耗和开关损耗，提高系统能效。

3. Electrical Performance

It is typically used for medium-and low-voltage power devices such as MOSFETs and IGBTs. Featuring low on-resistance ($R_{ds(on)}$) and low gate charge (Q_g), it supports high-frequency switching, which can reduce conduction losses and switching losses while improving system energy efficiency.

4、应用领域：

常见于汽车电子（如电池管理系统、车载充电器、电机驱动）、消费电子（快充、电源管理）、工业控制等领域，适用于需要高可靠性、高功率密度的场景。

4. Application Fields

It is commonly used in fields such as automotive electronics (e.g., battery management systems,

on-board chargers, motor drives), consumer electronics (fast charging, power management), and industrial control. It is suitable for scenarios requiring high reliability and high power density.

5. 工艺特点：

采用铜夹片 (Cu Clip) 或铝线键合等工艺，结合顶部开窗设计，优化热流路径和电气连接，兼顾散热与信号传输性能。

5. Process Features

It adopts processes such as copper clip (Cu Clip) or aluminum wire bonding, combined with a top windowing design. This optimizes the heat flow path and electrical connection, achieving a balance between heat dissipation performance and signal transmission performance.